
1

G52CPP
C++ Programming

Lecture 3

Dr Jason Atkin
E-Mail: jaa@cs.nott.ac.uk

2

Revision so far…

• C/C++ designed for speed, Java for catching errors
• Java hides a lot of the details (so can C++)
• Much of C, C++ and Java are very similar

• char* is a pointer to a char , but can sometimes be
treated as a string

• C++ bool values are like Java booleans
– ints can be used, 0 means false, non-zero (or 1) means true

• Sizes of C/C++ types can vary across platforms
• C provides a powerful library of functions

– You should #include the right header file to use them

3

Pointer example
long l = 32;

long* pl1 = &l;

long* pl2 = pl1 ;

• Q: What goes into the red circled parts?

Conceptually:

lpl1 Address Name Value

1200 l

5232 pl1

6044 pl2

Actually: (example addresses)

pl2

4

Pointer example
long l = 32;

long* pl1 = &l;

long* pl2 = pl1 ;

• Q: What goes into the red circled parts?

Conceptually:

lpl1

32

Address Name Value

1200 l 32

5232 pl1

6044 pl2

Actually: (example addresses)

pl2

5

Pointer example
long l = 32;

long* pl1 = &l;

long* pl2 = pl1 ;

• Q: What goes into the red circled parts?

Conceptually:

lpl1

1200 32

Address Name Value

1200 l 32

5232 pl1 1200

6044 pl2

Actually: (example addresses)

pl2

6

Pointer example
long l = 32;

long* pl1 = &l;

long* pl2 = pl1;

• Assigning one pointer to another means:
– It points at the same object
– It has the same address stored in it (i.e. the same value)

Conceptually:

lpl1

1200 32

Address Name Value

1200 l 32

5232 pl1 1200

6044 pl2 1200

Actually: (example addresses)

pl2

1200

7

Dereferencing example
long l1 = 32;

long* pl1 = &l1;

long* pl2 = pl1;

long l2 = *pl2;

• What goes into the red circled parts?
– Hint: What is *pl2 ?

Conceptually:

l1pl1

1200 32

Address Name Value

1200 l1 32

5232 pl1 1200

6044 pl2 1200

6134 l2

Actually: (example addresses)

pl2

1200

l2

8

Dereferencing example
long l1 = 32;

long* pl1 = &l1;

long* pl2 = pl1;

long l2 = *pl2;

• So, we can access (use) the value of l1 without knowing it
is the value of variable l1 (just the value at address pl2)

Conceptually:

l1pl1

1200 32

Address Name Value

1200 l1 32

5232 pl1 1200

6044 pl2 1200

6134 l2 32

Actually: (example addresses)

pl2

1200 32

l2

9

Dereferencing example
long l1 = 32;

long* pl1 = &l1 ;

long* pl2 = pl1 ;

long l2 = * pl2 ;

*pl1 = 4; Q: What does this do?

Conceptually:

l1pl1

1200 32

Address Name Value

1200 l1 32

5232 pl1 1200

6044 pl2 1200

6134 l2 32

Actually: (example addresses)

pl2

1200 32

l2

10

Dereferencing example
• ‘*pl1 = 4 ’ changes the value pointed at by pl1

• We can change the thing pointed at without
knowing what variable the address actually refers
to (just ‘change the value at this address’)

• The value of l1 changed without us mentioning l1

Conceptually:

l1pl1

1200 4

Address Name Value

1200 l1 4

5232 pl1 1200

6044 pl2 1200

6134 l2 32

Actually: (example addresses)

pl2

1200 32

l2

11

Lecture Outline

• Arrays
– Only one-dimensional arrays
– Fit well with pointers

• char* and C-strings

• argv and argc

12

An introduction to (1D) arrays

13

Simple array creation (1)

• Create an uninitialised array:
– Add the square brackets [] at the end of the variable

declaration, with a size inside the brackets
– e.g. array of 4 char s: char myarray[4];

– e.g. array of 6 short s: short secondarray[6];

– e.g. array of 12 char* s: char* thirdarray[12];

• Values of the array elements are unknown!
– NOT initialised!
– Whatever was left around in the memory locations

14

Simple array creation (2)
• Creating an initialised array:

– You can specify initial values, in {}
– E.g. 2 short s, with values 4 and 1

short shortarray[2] = { 4, 1 };

– E.g. 3 char s, with values ‘o’, ‘n’ and ‘e’
char chararray[3] = {'o','n','e'};

• You can let the compiler work out the size:
long longarray[] = (size 3)

{100000, 5, 543};

char chararray2[] = (size 8)
{'c','+','+','c','h','a','r', 0 };

15

Arrays in memory
• C-Arrays are stored in

consecutive addresses in
memory (this is one of
the few things that you
CAN assume about data
locations)

• Important point: From
the address of the first
element you can find the
addresses of the others

• Example: ->
short s[] = { 4,1 };
long l[] ={100000,5};
char ac[] = {

'c','+','+','c',
'h','a','r',0};

Address Name Value Size

1000 s[0] 4 2

1002 s[1] 1 2

1004 l[0] 100000 4

1008 l[1] 5 4

1012 ac[0] ‘c’ 1

1013 ac[1] ‘+’ 1

1014 ac[2] ‘+’ 1

1015 ac[3] ‘c’ 1

1016 ac[4] ‘h’ 1

1017 ac[5] ‘a’ 1

1018 ac[6] ‘r’ 1

1019 ac[7] ‘\0’, 0 1

16

What we do and do not know…
• The addresses of

elements within an array
are consecutive

• The relative locations of
different arrays, or
variables are NOT fixed

• Example:
short s[] = { 4,1 };

long l[] ={100000,5};

char ac[] = {
'c','+','+','c',

'h','a','r',0};

• With a different compiler
you may instead get a
different ordering, or gaps

Address Name Value Size

1000 ac[0] ‘c’ 1

1001 ac[1] ‘+’ 1

1002 ac[2] ‘+’ 1

1003 ac[3] ‘c’ 1

1004 ac[4] ‘h’ 1

1005 ac[5] ‘a’ 1

1006 ac[6] ‘r’ 1

1007 ac[7] ‘\0’, 0 1

1020 l[0] 100000 4

1024 l[1] 5 4

1030 s[0] 4 2

1032 s[1] 1 2

17

Accessing an array element

• Exactly the same as in Java, use []
• E.g.:
char ac[] = { 'c','+','+','c',

'h','a','r ', 0 };

char c = ac[4];

• Using what we have seen of pointers:
• char* pc1 = &(ac[0]);

• char* pc2 = &(ac[5]);

18

Java vs C arrays : length

• A problem in C/C++ (not Java):
char ac[] = { 'c','+','+','c','h','a',

'r ', 0 };

char c = ac[4];

char c2 = ac[12]; OOPS!

• How long is my array?
– Java arrays include a length
– C arrays do not. You could:
1. Label the last element with unique value?
2. Store the length somewhere?
3. If you can find the array size, work out the length

19

Java vs C arrays : bounds checks

• Java will throw an exception if you try to
read/write beyond the bounds of an array

• C/C++ will let you read/overwrite whatever
happens to be stored in the address if you
read/write outside of array bounds
– Checking would take time, speed vs safety

20

Array names act as pointers

• The name of an array can act as a pointer
to the first element in the array:

char ac[] = { 'c','+','+','c',

'h','a','r',' \0' };

• These are equivalent:
char* pc3 = &(ac[0]);

char* pc3 = ac;

and make pc3 point to the first element.
Note: &ac gives same value, different type

21

You can treat pointers as arrays

• Treating a pointer as an array:
char ac[] = { 'c','+','+','c',

'h','a','r',' \0' };

char* str = ac;

char c = str [4]; // c gets value ‘h’

• The type of pointer indicates the type of array
• The compiler trusts you

– It assumes that you know what you are doing
– i.e. it assumes that the pointer really has the address

of the first element of an array

• So if you are wrong, you can break things

22

char* and C-String

23

C-string / char*

• We have treated char* as a ‘string’
• In fact it is a pointer to a char /character

• C-strings consist of an array of characters,
terminated by a character value of zero
– The value zero is expressed by ‘\0’, or 0

• NOT ‘0’ !!! (which is 48 in ASCII)

• Since arrays are in consecutive memory
addresses, if we know the address of the first
character in the array we can find all of the others

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘w’ ‘o’ ‘r’ ‘l’ ‘d’ ‘!’ ‘\n’ 0

24

char* as a string?

• The only reason that a char* can act like a
string is:
– It was decided by someone that strings would be an

array of characters with a 0 at the end
– But, consider the layout of an ASCII text file – it

makes sense – this is the way that files are laid out
• There are various string functions in the C library

– The string functions assume that, the char* is a
pointer to an array of chars, with a value 0 at the end
to mark the end of the array

• E.g.:
– printf() to print a string
– strlen() to determine the length of a string
– strcpy() to copy a string into another string

25

Standard Library String Functions
• There are many string functions in the standard C library
• You should #include <cstring> to use them
• You need to know these and what they do
• Examples:
strcat(s1,s2) Concatenates string s2 onto the end of s1
strncat(s1,s2,n) Concatenates up to n chars of string s2 to the

end of s1
strcmp(s1,s2) Compares two strings lexicographically
strncmp(s1,s2,n) Compares first n chars of string s1 with the first

n chars of string s2
strcpy(s1,s2) Copies string s2 into string s1 (assumes room!)
strncpy(s1,s2,n) Copies up to n characters from string s2 into

string s1. Again assumes there is room!
strstr(s1,ch) Returns a pointer to the first occurrence of char

ch in string s1
strlen(s1) Returns the length of s1
sprintf(str,…) As printf, but builds the formatted string inside

string str. ASSUMES THERE IS ROOM!!!

26

String literals are arrays of chars

• Example:
char* str =

“Hello! \n”;

• We have 2 things:
– A variable of type

char* , called str

– An array of chars,
with a 0 at the end
for the string

Address Value

10000 ‘H’ 72

10001 ‘e’ 101

10002 ‘l’ 108

10003 ‘l’ 108

10004 ‘o’ 111

10005 ‘!’ 33

10006 ‘\n’ ?

10007 ‘\0’ 0

Address Variable Value

2000 str 10000

27

You can manually create ‘strings’

1) Declare an array:
char ac[] = {

‘c’,‘+’,‘+’,‘c’,
‘h’,‘a’,‘r ’,‘ \0’
};

2) Get/store address of
the first element:

char* pc = ac;

3) Pass it to printf :
printf (“%s”, pc);

or just use array name:
printf (“%s”, ac);

Address Name Value Size

1000 ac[0] ‘c’ 1

1001 ac[1] ‘+’ 1

1002 ac[2] ‘+’ 1

1003 ac[3] ‘c’ 1

1004 ac[4] ‘h’ 1

1005 ac[5] ‘a’ 1

1006 ac[6] ‘r’ 1

1007 ac[7] ‘\0’, 0 1

28

Initialisation of a char array

• You can initialise a char array from a string,
so the following are equivalent:

char c1[] = "Hello";

char c2[] = {'H','e','l','l','o',' \0'};

• This is a special case for char arrays
• It is different to:
char* c3 = "Hello";

– Which creates a POINTER, not an ARRAY
– A ‘little’ confusing

29

Would this code work?
#include <cstdio>

int main()
{

char c1[] = "Hello";
char c2[] = { 'H', 'e', 'l', 'l', 'o', 0};
char* c3 = "Hello";

c1[0] = 'A';
c2[0] = 'B';
c3[0] = 'C';

printf("%s %s %s\n", c1, c2, c3);
return 0;

}

30

Example
#include <cstdio>

int main()
{

char c1[] = "Hello";
char c2[] = { 'H', 'e', 'l', 'l', 'o', 0};
char* c3 = "Hello";

c1[0] = 'A';
c2[0] = 'B';

// c3[0] = 'C'; // Would probably segmentation fault

printf("%s %s %s\n", c1, c2, c3);
return 0;

}

• But it would compile!

31

Important!

32

Not all char* s are C-Strings

• This is important to remember
• A C-string is a char* which points to an

array of characters with a 0 to mark the end

• Note: The parameter for main()

char* argv[]

IS an array of C-strings
• There is no way to know this from the parameter

type, but we know (from other information) that
main always gets passed an array of C-Strings

33

argc and argv

34

The “Hello World” Program
#include <stdio.h> /* C file */

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

#include <cstdio> /* C++ file */

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

C version

C++ version

35

Command line arguments

‘t’ ‘e’ ‘s’ ‘t’ 0

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 0

‘1’ ‘4’ 0

• int main(int argc, char *argv[])

• argc: count of arguments – including the filename

• argv[] : array of char* s

• argv[i]: a char* pointing to an array of chars

• To get a character from an array, use [] (or * to get first)

• e.g. command line: ‘test hello world 14 ’

argc = 4

‘w’ ‘o’ ‘r’ ‘l’ ‘d’ 0

The actual strings – arrays of char s

argv[0]

Elements of argv are char* s
(pointers to a char)

argv[1]

argv[2]

argv[3]

argv

Pointer to array
of char* s

36

Use of command line args

• What can we do with command line arguments?
• Treat them as a string:

– e.g.

printf(“Filename was %s\n”, argv[0]);

• Extract a character from them:
– e.g.

char* param = argv[1];
printf(“%c,%c,%c\n”, param[0], *param, param[1]);
printf(“%c, %c\n”, *argv[1], argv[1][0]);

• Convert a string (not a char!) to an integer
• e.g.

int iVal = atoi(argv[3]);

‘t’ ‘e’ ‘s’ ‘t’ 0

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 0

‘1’ ‘4’ 0

argv[0]

argv[1]

argv[3]

37

main()

• You don’t need to declare the parameters
for main

int main()

• You can declare argv as:
char** argv

– instead of

char* argv[]

– The two forms are equivalent
– Both forms are pointers to pointers

38

Determining string length

39

Example: strlen()
• int strlen(char* str)

– Get string length, in chars
– Check each character in turn

until a ‘\0’ (or 0) is found,
then return the length

– Length excludes the ‘\0’

Address Name Value

1000 str[0] ‘C’

1001 str[1] ‘ ’

1002 str[2] ‘s’

1003 str[3] ‘t ‘

1004 str[4] ‘r’

1005 str[5] ‘i’

1006 str[6] ‘n’

1007 str[7] ‘g’

1008 str[8] ‘\0’, 0

int mystrlen(char* str)
{

int i = 0;
while (str[i])

i++;
return i;

}

Remember from lecture 2, integers can be used in conditions
Value 0 means false, non-zero means true.

40

Summary

41

Pointers are important

• If you understand pointers, many other
things will make sense

• Do not worry if it is not entirely clear now
– But please go through these slides until it is

• Pointers are not complex
– Just remember that they just store an address

of something else
– And the type of thing that they point at
– I.e. They point to something else

42

Arrays

• You can easily create arrays
– Initialised or uninitialised

• Array elements are stored in
consecutive areas of memory
– Very useful – see next lecture

• No length is stored for an array
– If you need it you need to store it or work it out

• No bounds checking is performed
when you use an array
– The compiler trusts you, so why waste time

checking up on you?

43

Next lecture

• More pointers
– Pointers can be treated as arrays
– Pointer casting and printing
– Pointer arithmetic

• Functions:
– Declarations and definitions

• Passing pointers as parameters

